Resting sympathetic baroreflex sensitivity in subjects with low and high tolerance to central hypovolemia induced by lower body negative pressure
نویسندگان
چکیده
Central hypovolemia elicited by orthostasis or hemorrhage triggers sympathetically-mediated baroreflex responses to maintain organ perfusion; these reflexes are less sensitive in patients with orthostatic intolerance, and during conditions of severe blood loss, may result in cardiovascular collapse (decompensatory or circulatory shock). The ability to tolerate central hypovolemia is variable and physiological factors contributing to tolerance are emerging. We tested the hypothesis that resting muscle sympathetic nerve activity (MSNA) and sympathetic baroreflex sensitivity (BRS) are attenuated in male and female subjects who have low tolerance (LT) to central hypovolemia induced by lower body negative pressure (LBNP). MSNA and diastolic arterial pressure (DAP) were recorded in 47 human subjects who subsequently underwent LBNP to tolerance (onset of presyncopal symptoms). LT subjects experienced presyncopal symptoms prior to completing LBNP of -60 mm Hg, and subjects with high tolerance (HT) experienced presyncopal symptoms after completing LBNP of -60 mm Hg. Contrary to our hypothesis, resting MSNA burst incidence was not different between LT and HT subjects, and was not related to time to presyncope. BRS was assessed as the slope of the relationship between spontaneous fluctuations in DAP and MSNA during 5 min of supine rest. MSNA burst incidence/DAP correlations were greater than or equal to 0.5 in 37 subjects (LT: n = 9; HT: n = 28), and BRS was not different between LT and HT (-1.8 ± 0.3 vs. -2.2 ± 0.2 bursts·(100 beats)(-1) ·mm Hg(-1), p = 0.29). We conclude that tolerance to central hypovolemia is not related to either resting MSNA or sympathetic BRS.
منابع مشابه
Heat stress modifies human baroreflex function independently of heat-induced hypovolemia.
Since human thermoregulatory heat loss responses, cutaneous vasodilation and sweating, cause hypovolemia, they should resultantly stimulate human baroreflexes. However, it is possible that the thermoregulatory system directly interacts with the baroreflex system through central neural connections independently of the heat-induced hypovolemia. We hypothesized that heat stress modifies the barore...
متن کاملBreathing through an inspiratory threshold device improves stroke volume during central hypovolemia in humans.
Inspiratory resistance induced by breathing through an impedance threshold device (ITD) reduces intrathoracic pressure and increases stroke volume (SV) in supine normovolemic humans. We hypothesized that breathing through an ITD would also be associated with a protection of SV and a subsequent increase in the tolerance to progressive central hypovolemia. Eight volunteers (5 men, 3 women) were i...
متن کاملCardiovascular Response Patterns to Sympathetic Stimulation by Central Hypovolemia
In healthy subjects, variation in cardiovascular responses to sympathetic stimulation evoked by submaximal lower body negative pressure (LBNP) is considerable. This study addressed the question whether inter-subject variation in cardiovascular responses coincides with consistent and reproducible responses in an individual subject. In 10 healthy subjects (5 female, median age 22 years), continuo...
متن کاملNeurohumoral mechanisms associated with orthostasis: reaffirmation of the significant contribution of the heart rate response
The inability to compensate for acute central hypovolemia underlies the clinical development of orthostatic hypotension and instability (e.g., syncope). Although neuro-humoral control of both cardiac output and peripheral vascular resistance contributes to hemodynamic stability during orthostasis, a notion has been proposed that the failure of adequate peripheral vascular constriction rather th...
متن کاملSex comparisons in muscle sympathetic nerve activity and arterial pressure oscillations during progressive central hypovolemia
Increased tolerance to central hypovolemia is generally associated with greater sympathoexcitation, high-frequency oscillatory patterns of mean arterial pressure (MAP), and tachycardia. On average, women are less tolerant to central hypovolemia than men; however, the autonomic mechanisms governing these comparisons are not fully understood. We tested the hypothesis that women with relatively hi...
متن کامل